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An optimum quantum measurement that minimizes the average probability of 
error is considered for symmetric quantum states. The positive operator-valued 
measure (POM) which satisfies the necessary and sufficient condition for the 
minimization of the average probability of error is derived by using the quantum 
Bayes strategy. It is also shown that the mutual information obtained in the 
optimum quantum measurement becomes extremum. Furthermore, an optimum 
quantum measurement for parameter estimation is found for symmetric quantum 
states by applying the maximum-likelihood estimation. The optimum POM for 
the parameter estimation has the same structure as that for the quantum state 
discrimination. 

1. ~TRODUCTION 

It is well known in quantum mechanics that nonorthogonal quantum 
states cannot be distinguished with certainty by means of any quantum mea- 
surement. This causes the degradation of detectability of quantum states in 
measurement processes and limits the efficiency of information transmission 
in quantum communication systems. Thus it is important in quantum measure- 
ment theory as well as quantum information theory to find an optimum 
quantum measurement that can distinguish among nonorthogonal quantum 
states as accurately as possible (Helstrom, 1969, 1976). Since coherent states 
used in optical communications with laser and fiber technology are nonorthog- 
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onal, finding the optimum measurement is also useful for design of high- 
performance signalreceivers. Quantum detection or decision theory is applied 
for investigating such problems (Helstrom, 1976). On the other hand, when 
a quantum state includes unknown parameters, it is important in quantum 
measurement theory to estimate the values of these parameters by performing 
some measurement on the quantum state (Helstrom, 1973, 1974; Holevo, 
1978). Estimating the phase shift of a photon state induced by some optical 
device is one typical problem. Such a problem is solved by using quantum 
estimation theory (Helstrom, 1976; Holevo, 1982). To obtain optimum mea- 
surements in quantum detection and estimation theories, we have to solve 
nonlinear operator equations which are very complicated. 

Therefore the purpose of this paper is to obtain optimum quantum 
measurements explicitly for discrimination among symmetric pure quantum 
states with equal a priori probabilities and parameter estimation for symmetric 
quantum states. In Section 2, the optimum quantum measurement that mini- 
mizes the average probability of error is derived by using the quantum Bayes 
strategy. It is shown that the mutual information obtained in this quantum 
measurement becomes extremum. In Section 3, applying the maximum- 
likelihood estimation, we obtain the optimum measurement for parameter 
estimation for symmetric quantum states. In Section 4, we summarize our 
results. 

2. DISCRIMINATION AMONG SYMMETRIC QUANTUM 
STATES 

2.1. Minimization of the Average Probability of Error 

In this section, applying the quantum Bayes strategy, we obtain an 
optimum measurement for discrimination among symmetric quantum states. 
Suppose that a physical system takes one of M symmetric quantum states 
with equal probabilities. Then we would like to find an optimum quantum 
measurement whose outcome allows us to know as accurately as possible 
which quantum state is realized. The M symmetric quantum states which 
should be distinguished by means of the quantum measurement are described 
by statistical operators, 

~j = J%)(,jl 

= ~'j-1 I~)(~[  ~'t"j-I (2.1) 

where j = l, 2 . . . . .  M. In this paper, we do not assume that the state vectors 
I~1), It~z) . . . . .  It~u) in equation (2.1) are linearly independent. Thus our 
result is valid for both linearly independent and linearly dependent state 
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vectors. In equation (2.1), the operator I' is unitary (I'V* = I'*V = ]) and 
satisfies the relation 

l "M = i (2.2) 

where i stands for an identity operator. This equation gives the relation of  
the statistical operator, Oj_+M = Oj. Each quantum state is assumed to have 
equal a priori probability pj, namely 

pj = lIM (2.3) 

We perform a quantum measurement to know the quantum state I~j = I q/)@j I 
as accurately as possible. Such a quantum measurement can be described by 
a positive operator-valued measure (POM) (Helstrom, 1976; Holevo, 1978), 
denoted as IIj, which satisfies the following relations: 

l~Iy > 0 (2.4) 

M 

X l]j = ] (2.5) 
j = l  

It should be noted that the POM which describes an optimum quantum 
measurement does not always become a projection operator. 

Using the POM IIj of the quantum measurement and the statistical 
operator Oj of  the quantum state, we can express the conditional probability 
POlk)  as 

POlk) = Tr[l~ljlbk] (2.6) 

which means the probability that we infer the quantum state 15j when the 
quantum state Ok is true, where Tr stands for the trace operation. Then 
the quantity POlk)  (j  ~ k) represents the detection-error probability and the 
average probability of  error P,  is given by 

1 M M 

POlk) 
'= k=l (~j )  

= 1 - ~ P(j l j )  (2.7) 
j = l  

where we have used the relation 2 ~  P(j lk)  = 1. Therefore our task is to 
find the POM l~Ij which minimizes the average probability of error P~. 
Applying the quantum Bayes strategy, we obtain the necessary and sufficient 
condition for the POM IIj to minimize the average probability of error P~ in 
the following form (Helstrom, 1969, 1976; Holevo, 1975; Yuen et al., 1975): 



1272 Ban, Kurokawa, Momose, and Hirota 

(-[j[pjOj - pkOk]l~Ik = 0 (2.8) 

-- PjPj >- O, (2.9) 

where f" is the Lagrange operator defined by 

M 
= E pj~j~Ij (2.10) 

j=l 

which becomes Hermitian from the first condition given by (2.8). When the 
POM I]j satisfies (2.8) and (2.9), the minimum value of the average probability 
of error is expressed as 

Pmin ~ min P~ 
{njj 

= 1 - Tr P (2.11) 

In our case, we set pj = 1/M and ~j = f'J-llt~)(t~lf'tJ-I in equations 
(2.8)-(2.10). 

It is very difficult to obtain the POM which minimizes the average 
probability of error by solving equations (2.8)-(2.10). However, we can 
obtain the analytical solution for the quantum states which satisfy equations 
(2.1)-(2.3). Now we will prove the following proposition. 

Proposition 1. When the quantum states satisfy the conditions given by 
equations (2.1)-(2.3), the optimum measurement that minimizes the average 
probability of error Pe is described by the POM I~lj which is defined by 

flj = [ ~j><}.l,j[ (2.12) 

[~j> = ~-l/21~jj> (2 .13)  

M 
= E I~Jj><l{/jl (2.14) 

j=l 

where the state vector I ixj) is called the optimum measurement state. In this 
case, the minimum value of the average probability of error is given by 

Pmin = 1 - I (~ l+ - l /Z lO) l  2 (2.15) 

The minimum value of the average probability of error and the optimum 
POM for the symmetric quantum states given by equations (2.1)-(2.3) have 
been obtained by means of the eigenstate-expansion method (Helstrom, 1976). 
But the results are too complicated to be applied in quantum measurement 
theory and quantum information/communication theory. On the other hand, 
the optimum POM given by equations (2.12)-(2.14) is useful for applications 
(Holevo, 1979; Hausladen and Wootters, 1994; Hausladen et al., 1996). 
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Proof of  the Proposition. To prove the proposition, we will show that 
the POM IIj given by (2.12)-(2.14) satisfies the necessary and sufficient 
conditions given by (2.8)-(2.10). From the definition of the operator 4) and 
the relation f ,u = / ,  we obtain 

M 

j = l  

M 

=-2 
i=2 

M 

= 2  
j=2 

91 r 

I%>@jl + 

= 4) (2.16) 

Since the operator ~' is unitary, the nonnegative Hermitian operator 4) com- 
mutes with the unitary operator f', that is, 

[4), I3"] = 0 (2.17) 

Thus the operators 4) and f 'can be simultaneously diagonalized and expressed 
in the following forms: 

4) = ~] "Yx I ~bh)<qbh I (2.18) 
heS 

~' = ~ e-i~ (2.19) 
h e S  

where S is the index set characterizing the spectrum of the operator. In 
equation (2.19), we have used the unital~y of the operator I3". Since 4) is a 
nonnegative Hermitian operator with Tr @ --- M, the eigenvalue "Yh satisfies 
"Yh -> 0 and Ex~s ~x = M. Furthermore, the relation 9M = ] requires that 
the parameter 0h should be 0h = 2rrnx/M with integer nh. Moreover, since 
the operator qb is Hermitian, the set of the eigenstates { Iqbh>lh e S} spans 
a complete orthonormal system in a Hilbert space ]g, 

<~bxlqbx') = ~x,x' (2.20) 

~] Id~x>(~bxl = ] (2.21) 
hES 

In the following, we will use the relation [4)+_1/2, f,j] = 0. Now we show 
that the POM Hj given by equations (2.12)-(2.14) satisfies the first condition 
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given by equation (2.8). Substituting equations (2.1), (2.3), and (2.12)-(2.14) 
into equation (2.8), we find for the left-hand side of equation (2.8) 

1 

= 1 I ~j>~jk(p~l (2.22) 
M 

Using equations (2.2) and (2.17), we can calculate the quantity ~jk as follows: 

= (l~ll ~/tj-ll~-l/2~/j-1 I I~J><l~l I ~/?j-l+-l/2~/k-I Itll> 

-- (~ l Q+J-l~p-t/2Qk-l l ~)(t~ l ~/+k-l~- l /2Qk-l  l ~)  

= (t~l r  -- (~lll ~)-l/2~rk-Jl t~)(t~ I ~- l /21 t~> 

= 0 (2.23) 

Therefore we have found that the first condition given by equation (2.8) is 
satisfied by the POM l~lj given by equations (2.12)-(2.14). To consider the 
second condition, we first calculate the Lagrange operator F given by equation 
(2.10). Substituting equations (2.1), (2.3), and (2.12)-(2.14) into (2.10), 
we obtain 

1 M 

j=l 

1 M 
= ~ .j~ I,j><,; f'+J-l,i,-l'~f'J-' I,><~jl 

1 (~- 112 I M = ~ (~11 I~1> E I tllj>(~J~Jl 
j=l 

1 + -  1/2 M = ~ (,1, i i ,> ~ i ,j>(,l,j 14,-"2 
j=l 

1 + -  1/2 = ~ <41 I,>4,,i,-,~2 

1 r 1/2 = ~ (+1 I~)~ '/z (2.24) 

Thus, for our purpose, we have to show that the following Hermitian operator 
is nonnegative: 
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(01+-1/2 [0)(~)1/2 __ ] O j)(Oj[ 

= ~/J-I[(01(~)-1/2]0)(~91/2 -- IO)(OI]~/'tJ -1 

___ Qs'-*c~Q,j-* (2.25) 

Since the unitary transform of the nonnegative Hermitian operator is also 
nonnegative Hermitian, it is enough to show the inequality c~ _> 0, which 
means that ( u l ~ l u )  >- 0 for any vector l u) in the Hilbert space ~ .  Using 
the Schwarz inequality such that (A I A ) ( B I B )  >- I(AIB) I 2, we can calculate 
as follows: 

(u I C lu) = - ( u t O ) ( O l u )  

= (01(I)-1/4(I)-1/410)(u]+1/4(~91/411,/) - I(01u)[  2 

> f ( O l ~ - l / 4 ~ l / 4 1 u ) l  2 - i(01u)l 2 

= j ( 0 f u ) 1 2 -  I ( 0 f u ) l  2 

= 0 (2.26) 

This result indicates that the second condition given by equation (2.9) is 
fulfilled. Therefore we have shown that the POM l-I/ given by equations 
(2.12)-(2.14) minimizes the average probability of error Pe. �9 

Using the above result, we can express the minimum value of the average 
probability of  error in the following form: 

Pmin = 1 -1(1[ /1+-1/210)12 
2 

The optimum POM I~Ij which minimizes the average probability of error is 
expressed as 

I~Ij = I lxj>(p,jl (2.28) 

[ }.Lj) = E ~ -  l/2e-iohU- l)(~bk I 0)  I ~/)x) (2.29) 
h~S 

Furthermore, the conditional probability P ( j l k )  is given by 

e ( j l k )  = I (Vojl Ok) [ 2 

= I (q2u2)jl,12 (2.30) 

where ~3 is the Gram matrix of the quantum states, that is, qSjk = (0jl0k). 
These results are valid for both linearly independent and linearly dependent 
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quantum states when equations (2.1)-(2.3) are satisfied. The optimum 
POM IIj given by equations (2.12)-(2.14) has been used as the decoding 
observable by Hausladen et al. (1996) to investigate the classical information 
transmitted through a quantum channel. However, the optimality of the decod- 
ing observable was not mentioned there. If the state vectors I t~t), 1~2) . . . . .  
IteM) are orthogonal, it is clear that the optimum POM given by equations 
(2.12)-(2.14) becomes the projection operator IIj = I t~)(t~jl. 

2.2. Extremum of the Mutual Information 

Thus far we have considered the minimization of the average probability 
of error. Here we will investigate the maximization of the mutual information 
obtained in the measurement for the symmetric quantum states defined by 
equations (2.1)-(2.3). The mutual information I is given by (Cover and 
Thomas, 1991) 

I = ~ pkP(jlk) In P(jlk_) (2.31) 

j=l k=l 5 '  
n=l 

where the conditional probability P(jlk) is defined by equation (2.6). In 
equation (2.31), the information is measured in nats. If the quantum measure- 
ment described by the POM l~Ij maximizes the mutual information, the follow- 
ing relation is satisfied (Holevo, 1973): 

f l i t S .  - = o ( 2 . 3 2 )  

where the Hermitian operator Pj is defined by 

= ~ p,l~, In - POlk) (2.33) 

P(j I n)pn l 
n=l  

This is the necessary, but not sufficient, condition for the POM l~Ij to maximize 
the mutual information I. To our knowledge, the sufficient condition has not 
been found. The condition given by equation (2.32) is equivalent to 81 = 0, 
where 81 is the first variation with respect to the POM IIj (Holevo, 1973), 
and the condition equivalent to 821 < 0 is not known. For the maximization 
of the mutual information, we have the following proposition. 

Proposition 2. When the quantum states are specified by equations 
(2.1)-(2.3), the POM I]j given by equations (2.12)-(2.14) satisfies the neces- 
sary condition (2.32) for the maximization of the mutual information. 
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Proof of  the Proposition. To prove the proposition, it should be noted that 
the conditional probability P(jI  k) given by equation (2.6) can be expressed as 

P(jlk) = I(t~t~-l/2~'J-klt~)l 2 ~ f ( j  -- k) (2.34) 

which satisfies the relations 

f ( j )  = f ( - j )  (2.35) 

_-+ M) = f ( j )  (2.36) 

that ~ = l  P(jlk)pk = (l /M) ~ ,  P(jlk) = It is found from these relations 
1/M. Then the operator ~- - ,g'k is calculated as 

1 M 
Fj - /~'k = ~ ~ On[lnf(j - n) -- In f (k  - n)] 

n=l 

1 
[~n,j-i On-k-l] In f(n)  

M n=l 

M 
1 ~] [~n+j-I 15k-n+l]lnf(n) (2.37) 

Mn=l 

where we have used the relation 15n~M = 0n and equations (2.35) and (2.36). 
Thus the left-hand side of equation (2.32) becomes 

1 M 
~Ij[Fj - Fk] ~Ik ~" M 2 ~IJl~}n+J -1 -- [)k-n+l] Ok lnf(n)  

n=l 

, )< = - -  I~y .~:(n)lnf(n) ~kl (2.38) 
M 

and the quantity ~ : (n )  is calculated as 

~jk(n) = (i, tj] l~In+j_l>(*n+j_ ! l ~.Lk> -- (~.Lj] ~Ik_n+l>(Ok-n+i ] ~.Lk> 

= t -~ re> 

-- (~ j l~- l l2~k- j -n+l  [~j><~j [(~)-,/2~/n-I [~j} 

= 0 (2.39) 

Therefore the POM l~ly given by equations (2.12)-(2.14) satisfies the necessary 
condition (2.32) for the maximization of the mutual information. �9 

In the quantum measurement described by the optimum POM IIj given 
by equations (2.12)-(2.14), we can obtain the information IM on the M 
symmetric quantum states, 

M 
IM = In M § ~ , f ( j ) l n f ( j )  (2.40) 

j=l 
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where f ( j )  is given by equation (2.34) and we have used equations (2.35) 
and (2.36). It should be noted that f ( j )  satisfies the relations 

f (O) = f ( M )  = 1 - Pmin ( 2 . 4 1 )  

M+n 
f(j) = 1 ( 2 . 4 2 )  

j = n + l  

where emin is the minimum value of the average probability of error given 
by equation (2.27) and n is an arbitrary integer. It is clear that the first term 
on the right-hand side of equation (2.40) represents the maximum value of 
the classical information that the physical system can carry and the second 
term represents the loss of the information due to the detection error. It is 
important to note that equation (2.40) is extremum, but not necessarily maxi- 
mum. For M = 1, 2, we can obtain 

12 = In 2 -- nbin(Pmin) (2.43) 

13 = In 3 - Pmin In 2 - Hbin(Pmin)  (2.44) 

where Hbi,(P) = --P In p -- (1 -- p) In(1 -- p) is the binary entropic function 
(Cover and Thomas, 1991). 

Hausladen and Wootters (1994) discussed that the mutual information 
becomes nearly maximum in the quantum measurement described by the 
POM I]j given by (2.12)-(2.14). They calculated the first variation 81 and 
showed 81 ~ 0. The proposition we have just proved makes their result more 
rigorous for the symmetric quantum states. From Propositions 1 and 2, the 
POM 1-1j given by equations (2.12)-(2.14) minimizes the average probability 
of error Pe and satisfies the necessary condition for the maximization of the 
mutual information I when the quantum states are pure and symmetric and 
have equal a priori probabilities. 

2.3. Simple Examples 

It is instructive to consider simple examples of the symmetric quantum 
states given by equations (2.1)-(2.3). Let us obtain the minimum value of 
the average probability of error and the optimum measurement states I Ix j) 
for two coherent s t a t e s  I t~l ) = I o t) and 1~/2) = 113). This problem has been 
already solved by several methods (Helstrom, 1967, 1968; Osaki et al., 1996a; 
Ban et al., 1996). In this case, we have 

f" = / ) (o t  + 13)(-1) ~*~ (2.45) 

t~) = Lot) (2.46) 

where ~ and 4' are bosonic annihilation and creation operators, respectively, 
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satisfying the commutation relation [& d*] = L and/5(et) is the displacement 
operator, namely/)(et)  = exp[otd + - ot*fi]. Using the relation 

it is easy to verify that 

/~)(et)/9([3) = /)(or + [3)e am('~13*) 

0j = J~, j ) (~i l  

= f0-11 a ) (a  I l~'+J-I (2.47) 

with j = 1, 2. To solve the problem, we have to obtain the simultaneous 
eigenstates Iqbt} and fd#2)of the operators ~ = la}(al + 113)([3J and V. It 
is an easy task to obtain 

i~bl ) = l a)  + e -i'Pl[3) (2.48) 
,/2(1 + ~) 

I qb=} = {or) - e - i v {  [3) (2.49) 
,/2(1 - K) 

which satisfy (d~yf ~bk) = 8jk, where the parameters K and q~ are given by 

[' ] K = exp - ~  (1~12 + 11312) + Re(~*[3) (2.50) 

~p = Im(~*[3) (2.51) 

Then the operators ~ and 12 are expressed as 

= ~ I cbk}~/~(+t I (2.52) 
k=l,2 

9 = 2 [qbk)e-iOk(t~k ] (2.53) 
k= 1,2 

with 

{3q = 1 + K  j'0n = 0  
(2.54) 

% 1 - -  K / 0 2 = 71" 

Thus the minimum value of the average probability of error becomes 

P m i n - - 1 -  (k=2~L2 ~/k- 1121 (r I ~bk) 12) 2 

= 1 ( l  - , / 1  - ~2)  
2 

(2.55) 



1280 Ban, Kurokawa, Momose, and Hirota 

and the optimum measurement states t IX0 and I }s are  obtained from equa- 
tion (2.29), 

i~,> = ~ ~;]~(+~lo~>l+~> 
k= 1,2 

1 = ~ (i +i> + I+2>) 

- 1 -  K 2 ] 1 ---~-2 ] 113> (2.56) 

I~2> = ~] 3'~-l/2e-iOk(+kl~>l+~) 
k=l,2 

1 
- , / f f  0 +i> - I+2>) 

1 - ~/1 - K~.~ I o 3 -  .1 + ~/1 - K ~  
- -1 - K 2 ] " ei~ i ---~7 ] 113) (2.57) 

Of  course, these results are identical with those obtained in Helstrom (1967, 
1968), Osaki et  al. (1996a), and Ban et  al. (1996). But the calculation is 
much easier in the present method. It has recently been found that the mutual 
information given by equation (2.43) becomes maximum in this optimum 
measurement (Osaki et al., 1996b). 

Next we consider an arbitrary binary quantum-state signal whose quan- 
tum states are given by I~l) and 1~2> with (t~ll~2) = Ke iq~. We define the 
unitary operator V as 

(2.58) 

where the state vectors I~bl> and I~bz> are given by 

I t~l> + e-iVllll2> 
I~bl> = ~/2(1 -- K) (2.59) 

El Ill> -- e-i,pll~2 > 
l qb2> = ~/2(i - K) (2.60) 

Then we can easily check the following relations: 

~j --  [l~lj><ll/jl = ~ j - l  I1~11><1~11 I ~ '? j - I  

(2.61) 

(2.62) 
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where ] is an identity operator defined on the Hilbert space spanned by the 
state vectors I t~l) and 1~2), 

? = I,l,,)(,ll + 1.2)(+2J- 1,2)( .21.O(.l l  
I - I(t~llt~2) l 2 (2.63) 

Therefore, Propositions 1 and 2 are valid for an arbitrary binary quantum- 
state signal with equal a priori probabilities. 

Finally let us consider linearly dependent spin-1/2 quantum states defined 
by I~j) = # - l }  d)) and }V) = (~), where the unitary operator 13' is given by 

(cos[2rrlM] - sin[2'rr/M]~ 
Q = I@in[2"rr/M] cos[2cdm] ] (2.64) 

It is easy to see that the relation s  I t~j) = 0 is satisfied. In this case, the 
nonnegative Hermitian operator dp becomes diagonal, 

M 
+ = X c,)<+jl 

j = l  

2 

Thus it is easy to see that the optimum measurement states is I lXy} = 
~ l ~ y }  and the minimum value of  the average probability of error is 
Pmin = 1 - (2/M), which are equal to those obtained in Helstrom (1976). 

3. P A R A M E T E R  ESTIMATION F O R  S Y M M E T R I C  Q U A N T U M  
STATE 

3.1. M a x i m u m - L i k e l i h o o d  Est imat ion  

In the preceding section, we have shown that the quantum measurement 
described by the POM IIj given by equations (2.12)-(2.14) minimizes the 
average probability of  error and makes the mutual information extremum for 
the symmetric quantum states defined by equations (2.1)-(2.3). In this section, 
we will prove that the continuous version of equations (2.12)-(2.14) becomes 
optimum for the maximum-likelihood estimation for the parameters of sym- 
metric quantum states. The quantum state whose parameter is estimated from 
the result of  the measurement is given by 

~(0) = I~(0))(~(0)1 

= 9(o) to>(,t 9t(o) (3.1) 
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where 0 is the parameter to be estimated and the operator I7(0) satisfies 
the relations 

17(0)17t(0) = 17t(0)17(0) = i (3.2) 

17(0017(02) = 17(0, + 02) (3.3) 

17(0 + //2) = 17(0 - / / 2 )  (3.4) 

with 17(0) = ]. Thus the operator 17(0) is unitary and periodic with respect 
to the parameter 0. Thus we can restrict the range of the parameter 0 to be 

1 I 
-~ l  --- 0 < ~l. Furthermore, we assume that there is not any prior knowledge 

of values of the parameter 0. Thus a priori  probability p(0) of  the value of 
the parameter 0 becomes 

p(O) = Il l  (3.5) 

The quantum measurement whose result indicates the value 0 of the parameter 
is described by the POM II(0) (Helstrom, 1976; Holevo, 1982), which satisfies 
the relations 

fl(0) >- 0 (3.6) 

I ~ d 0  I](0) = i (3.7) 
112 

We have to obtain the optimum POM 1~I(0) such that we can estimate the 
value of the parameter as accurately as possible. 

When we apply the maximum-likelihood estimation (Helstrom, 1976; 
Milburn et al., 1994), we obtain the necessary and sufficient conditions for 
the POM 1~I(0) to be optimum, 

[Y - p(0)0(0)]I~l(0)  = 0 (3 .8)  

- p(0)0(0) -> 0 (3.9) 

where r is the Lagrange operator defined by 

I 
U2 

r = dO p(0)13(0)l~l(0) (3.10) 
-1/2 

which is required to be Hermitian. In our case, we set i~(0) = 17(0) I d~><t~ 1 17t(0) 
and p(0) = 1/l in equations (3.8)-(3.10). Then we obtain the following 
proposition. 

Proposition 3. When the quantum state satisfies the conditions given 
by (3.1)-(3.5), the optimum measurement by which we can estimate, as 
accurately as possible, the value of the parameter of the quantum state is 
described by the POM I~I(0) defined by 
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fI(0) = I ix(0))(ix(0)l (3.11) 

I ix(0))  = ~-v21 q~(0)) ( 3 . 1 2 )  

I "2 = dO I t~(O))(,(O) I (3.13) 
- l / 2  

Proof^of the Proposition. To prove the proposition, we will show that 
the POM I1(0) given by (3.11)-(3.13) satisfies the necessary and sufficient 
conditions given by (3.8) and (3.9). For our purpose, it should be noted that 
the following relation is obtained from (3.2)-(3.4): 

I? f'(ofi'f't(o) = d4, f'(o) l,(,l,)>(,l,(,b)l f ' (o)  
1/2 

= d~b I,(~b + O))@(~b + 0) 1 
-//2 

-//2 

= * (3.14) 

where we have used the periodicity of the quantum state with respect to the 
parameter; Since the operator I;'(0) is unitary, the nonnegative Hermitian 
operator �9 commutes with the unitary operator I?(0), that is, 

[q', f'(0)l = 0 (3.15) 

Using this result, we calculate the Lagrange operator ~c given by (3.10) 
as follows: 

1 F ? = 7  /~2 

l I/2 

= ! (Ol~,-,~f,) I "2 
l -t/2 

1 

2 

1 

1 

dO ~,(0))(,(0)1 ~(0))(~(0)l 

dO r q,(0))(q, J q'-  "21 q,)(q,(0) I'i '-''2 

dO f,(O))(~(O)l~ -''2 

(~ I'i'-~a t,) 'i"/2 (3.16) 



1284 Ban, Kurokawa, Momose, and Hirota 

This indicates that the Lagrange operator ~ is Hermitian. Let us now show 
that the POM fI(0) given by equations (3.11)-(3.13) satisfies the first condi- 
tion given by (3.8). Substituting (3.1), (3.11)-(3.13), and (3.16) into (3.8), 
we obtain 

1 ~r- 1/2 = -~ [ (* l  I t~)~ 1'2 -- I*(O))(*(O)ll~tr-u21t~(O))(~b(O)lql t-u2 

1 ~_1/21 = 7 ( r  r 1 6 2  L, i , -"2 

1 
l I @(0)}{@(0) I@-  ln l d~(O))(t~(O) I ~ - u 2  

= 1 (,I q,-1'21r162 q , - ' 1 2  
l 

1 [ i l l (O) ) ( r  n ~ -  1/21 ill}(qJ(O ) n ~ - 1 / 2  
l 

= 0. (3.17) 

Thus the first condition given by (3.8) is fulfilled. Next we will prove that 
the following Hermitian operator is nonnegative: 

1 0)~u2 
- p(o)o(o )  = - / [ ( r  - 1 0 ( o ) ) ( 0 ( o ) t ]  

= ! e(O) t { i ] / l~ t~- l /2 l~ / ) l t~ l /2  _ i,}(,llI?t(O) 
l 

1 l?(0)d~tf, t(0) (3.18) 

where we have used the commutation relation (3.15). Since the unitary 
transform of the nonnegative Hermitian operator is also nonnegative Her- 
mitian, it is enough to show that the operator a~t is nonnegative. Using the 
Schwarz inequality, we obtain for any vector l u) in the Hilbert space 

( u l J / t l u )  = (ll l l ~tf- l/2 l l l l )(u l a~tl/21u) - 1 ( / / 1 0 ) 1 2  

: (1111 ~t~ - 114~y-1/41 i ] j ) (u 1 lt~1/4~1/41 q/) _ I (u  t ~/) l  2 

_> I ( u 1 ~ 1 1 @ - l / 4 1 r  I (u le ) l  2 

= i ( u l r  ~ - I ( u l r  2 

= 0 (3.19) 
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This result indicates that d~t -> 0 and the second condition given by (3.9) is 
fulfilled. Therefore we have found that the POM I~I(0) given by (3.1 l)-(3.13) 
satisfies the necessary and sufficient conditions in the maximum-likelihood 
estimation. �9 

When the quantum measurement is described by the POM (I(0), the 
operator (~ which represents the measured quantity is expressed as 

(~ = ( dO- 0I~(0) (3.20) 

In general, since the POM I~1(0) is not a projection operator, the operator 6 
defined by (3.20) does not become Hermitian. So, the operator (~ is sometimes 
called the semiobservable. In the quantum measurement, the conditional 
probability P(~b I 0) that the estimated value of the parameter is ~b when the 
value 0 is true is expressed as 

P(~bl0) = P(d? - 0) 

= Tr[l~l(~b)lS(0)] 

~--- l ( l [ / l ~ - l / 2 l l ~ ( i J )  - -  0 ) ) 1 2  

= I~u2(d~ - O)l 2 (3.21) 

where ~(~b - O) = ~(qb, O) = (O(~b) I O(O)) is the continuous version of the 
Gram matrix of the quantum states. 

3.2. Simple Examples 

Before closing this section, we will consider two simple examples, the 
phase estimation and position estimation. The optimum measurements have 
already been obtained by solving (3.8)-(3.10). Here we directly calculate 
(3.11)-(3.13), which is much easier. First we obtain the optimum measure- 
ment for phase estimation of  the quantum state. In this case, the quantum 
state is given by 

I t~(0)) = exp[- i0~t~]  I t~} (3.22) 

with - ' t r  --< 0 < rr. Then we have 1 = 27r. When we expand the quantum 
state I~) as ItS) = ~ = o  t~,ln), the operator ~ is calculated to be 

= 2"rr ~ I~,,IZln)(nl (3.23) 
n=0  

which is diagonal in the Fock-state basis. Thus the optimum POM is easily 
obtained as 

I~I(0) -- I I.L(0))(VL(0)I (3.24) 

1 oo ~" e-i~ (3.25) 
n~--0 
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where we have assumed 0n 4 : 0  for simplicity. In particular, when the 
parameter 0 ,  is positive for all n, the quantum state IlL(0)) becomes the 
Susskind-Glogower phase eigenstate and the semiobservable in this optimum 
measurement is the Susskind-Glogower phase operator ~bsc (Susskind and 
Glogower, 1964; Carruthers and Nieto, 1968), which is not Hermitian, 

~bsc = d+ I qb)~b(+l (3.26) 

oo 

exp[--id~sG] = ~ I n)(n + 11 (3.27) 
n = O  

with 
Qo 

Ida) = - ~  ,~--0 exp(-m~b)ln) (3.28) 

This means that the best strategy for the phase estimation is to measure the 
Susskind-Glogower phase operator t~sG. 

Next let us consider a one-dimensional physical system which extends 
between x = -�89 and x = �89 We assume the periodic boundary condition 
10(�89 = 10(-�89 In this case, the state vector 10(x)) can be expressed as 

10(x)) = exp[-i/~x] 10) (3.29) 

where p is the momentum operator of the system whose spectrum is given 
by Pn = 2,rrnll with n = 0, - 1 ,  __.2 . . . .  , ___oo. Then the operator ~ is 
easily calculated, 

,~ = ax  10(x ) ) (0 (x ) t  
112 

= 1 ~ 10nlZlpn)(pnl (3.30) 
n = - a o  

where Ipn) is the eigenstate of the momentum operator with the eigenvalue 
Pn = 2'rrnll and 0n = (Pn 10). Thus the optimum POM II(x) is given by 

(I(x) = IlL(x))(lL(x)l (3.31) 

1 ~ On e_ipnX n ~ (3.32) 
IlL(X)) = - ~ n . ~ _  ~ On [ r 'n,  

When the parameter 0n is positive for all n, the state vector IlL(x)) becomes 
the eigenstate of the position operator. In the limit of I ---> 0% the best strategy 
for the position-parameter estimation of the quantum state is to measure the 
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position observable .f, which is Hermitian. Although the results given by 
equations (3.25) and (3.32) were obtained by solving equations (3.8)-(3.10), 
the calculation of equations (3.11)-(3.13) is much easier. 

4. SUMMARY 

We have proved that in the sense of the minimization of the average 
probability of error, the POM given by equations (2.12)-(2.14) describes the 
optimum quantum measurement for discrimination among the symmetric 
quantum states with equal a priori  probabilities. We have also shown that 
the POM satisfies the necessary condition for the maximization of the mutual 
information. Thus the mutual information obtained in the measurement is 
extremum. Furthermore, applying the maximum-likelihood estimation, we 
have found that the POM given by equations (3.11)-(3.13) describes the 
optimum quantum measurement for the parameter estimation of the symmetric 
quantum state. The optimum POM for the parameter estimation has the same 
structure as that of the discrimination of the quantum states. We have given 
simple examples to illustrate our results. 
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